Skip to main content
Read csv file Using Numpy Methods

Read CSV file Using Numpy

I’ll show you how to read a csv file and convert it into a NumPy array in this post. We’ll write NumPy data to a CSV file. The CSV file will then be read and transformed to a Numpy array. I’ll show you how to read a CSV file using both numpy.loadtxt() and numpy.genfromtxt() methods.

CSV is a plain-text file that enables data editing and importation into spreadsheets and databases easier. The CSV files can be directly manipulated by Python like a text file or string.

The term Numpy comes from the phrase “Numerical Python”. It is a Python package that performs n-dimensional array operations.

You can also checkout other python tutorials:

Read CSV file Using Numpy

Let’s read CSV file using a method and converted them into NumPy array.

Using numpy.loadtxt()

The numpy.loadtxt() is used to load data from a text file in python. In the text file, each row must contain an equal number of values.

Syntax:
numpy.loadtxt(fname, …)

The parameters are :

  • fname : The file name.
  • dtype : Data-type of the resulting array . The default data type(dtype) parameter for numpy.loadtxt( ) is float.
  • delimiter : The string used to separate values.The default is any whitespace.
  • converters : A dictionary mapping column number to a function that will convert that column to a float.
  • skiprows : Skip the first skiprows lines. The default is 0.
import numpy as np
data = np.loadtxt("test.csv", dtype=int)
#converted to integer data type
print(data)

Using numpy.genfromtxt()

The Numpy genfromtxt() function is used to load the data from the text files, with missing values handled as specified.

Syntax:
numpy.genfromtxt(fname, filling_values=None, …)

The parameters are :

  • name: It is the file
  • dtype: It is the data type of the resulting array.
  • comment: optional parameter and use for comment.
  • delimiter: optional parameter and used to separate values.
  • skip_header: optional parameter and use to skip lines from the beginning of the file.
  • missing_values: optional parameter and use to set of strings corresponding to missing data.
  • filling_values: optional parameter and use to set of values to be used as default when the data are missing.

To load a CSV file, let’s write a Python script. We’ll make a Numpy array and write it to a CSV file, then read that CSV file using numpy genfromtxt() method.

import numpy as np
# Let's creat a numpy array
nparray = np.array([[1, 3, 5],[2, 4, 6],[1, 5, 6]])

# Saving the array
np.savetxt("test.csv", nparray, delimiter=",")

# Reading the csv into an array
numarray = np.genfromtxt("test.csv", delimiter=",")

print(numarray)

Leave a Reply

Your email address will not be published. Required fields are marked *